If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-21x+15=0
a = 3; b = -21; c = +15;
Δ = b2-4ac
Δ = -212-4·3·15
Δ = 261
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{261}=\sqrt{9*29}=\sqrt{9}*\sqrt{29}=3\sqrt{29}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-3\sqrt{29}}{2*3}=\frac{21-3\sqrt{29}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+3\sqrt{29}}{2*3}=\frac{21+3\sqrt{29}}{6} $
| y=I(-1)2-3(-1) | | −8−5(n−2)=3(8n+3)+9 | | 2b/5+2=-6 | | (1/4p)+5=4 | | a÷6=14 | | 7=3/7(5)+b | | 15=5+5a/4 | | y=I0+2I-1 | | 6g+7=5g+16 | | 3x+2x=10x-10 | | X-15=2/5(x+15) | | -4x-3=-21 | | 13x-1=13+11x | | y=I1+2I-1 | | 5x-7=-2x | | 5k+8=-1+4k | | x/1.5+3.2=6.2 | | 250-25x=50x | | y=I-1+2I-1 | | 2x+5x+4x=5x | | 1000•x=4.9512 | | 5-1-j=-8-3j | | y=I-2+2I-1 | | -3(4x-8)-1=x+3(x+9) | | 4x+5=−29+4x | | 180=8x+6(1.5x) | | 9v+2=10v | | 7/1.1=z/9.65 | | 5x+5x-34=-204 | | 15y31=61 | | 6z^2-15z-6=0 | | y=I-3+2I-1 |